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Abstract

This paper deals with the adaptation of unstructured meshes in three dimensions for transient problems with an empha-
sis on CFD simulations. The classical mesh adaptation scheme appears inappropriate when dealing with such problems.
Hence, another approach based on a new mesh adaptation algorithm and a metric intersection in time procedure, suitable
for capturing and track such phenomena, is proposed. More precisely, the classical approach is generalized by inserting a
new specific loop in the main adaptation loop in order to solve a transient fixed point problem for the mesh–solution cou-
ple. To perform the anisotropic metric intersection operation, we apply the simultaneous reduction of the corresponding
quadratic form. Regarding the adaptation scheme, an anisotropic geometric error estimate based on a bound of the inter-
polation error is proposed. The resulting computational metric is then defined using the Hessian of the solution. The mesh
adaptation stage (surface and volume) is based on the generation, by global remeshing, of a unit mesh with respect to the
prescribed metric. A 2D model problem is used to illustrate the difficulties encountered. Then, 2D and 3D complexes and
representative examples are presented to demonstrate the efficiency of this method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Nowadays, reducing the complexity of numerical simulations is always a crucial stake despite the constant
increase of computer power. Mesh adaptation is one among the various methods considered to reduce the sim-
ulation complexity. The aim is to control the numerical solution accuracy by modifying the domain discret-
ization according to size and directional constraints. For time-dependent simulations, mesh adaptation is even
more crucial as the solution is usually not known a priori and as physical phenomena progress arbitrarily in
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the (whole) computational domain. Without adaptation this would imply the use of a uniformly fine mesh size
everywhere in order to preserve the solution accuracy.

Mesh adaptation is a non-linear problem linked to the solution. Therefore, it seems intuitive to propose an
iterative procedure to solve this problem. Indeed, for a steady simulation, an adaptive computation is carried
out via a mesh adaptation loop inside which an algorithmic (or iterative) convergence of the couple mesh–
solution is sought, in the sense that the solution is algorithmically (or iteratively) converging toward the steady
state solution and the mesh is converging toward the adapted mesh associated to this converged steady state.
In the following sections, we will refer to this scheme as the classical mesh adaptation algorithm. Nevertheless,
such an approach is no longer valid for time-dependent simulations as the physical solution progresses in time.
We will point out that, in general, the classical mesh adaptation algorithm reveals intrinsically inadequate
when dealing with CFD transient simulations. Indeed, roughly speaking, the mesh is always ‘‘left behind’’ with
respect to the solution, i.e., a phase shift in time between mesh and solution occurs. In order to reduce this
shift, a possible corrective method could be to adapt the mesh frequently, but in this case, relatively to each
mesh modification, an important source of error due to the interpolation (or transfer) of the solution from the
old mesh on the new one is introduced. Consequently, the solution accuracy is strongly related to the number
of adaptation. Moreover, the choice of the number of mesh adaptation is arbitrary. To overcome these prob-
lems, a new general mesh adaptation scheme is proposed, specifically intended for time-dependent problems.
This approach can be perceived as a generalization of the steady mesh adaptation algorithm as a supplemen-
tary loop is introduced inside the classical mesh adaptation algorithm. This extra loop introduces an implicit
coupling between the mesh and the solution by means of a transient fixed point. It allows us to solve the non-
linear problem of mesh adaptation for unsteady simulations. Formally speaking, in this procedure, it is cru-
cial: (i) to predict the progression of the physical phenomena in the domain and (ii) to refine (adapt) the mesh
in all regions where these phenomena progress. With this completely automatic method, the spatial part and
the temporal part of the (truncation) error are controlled.

To be useful, this algorithm must be evaluated on a real problem considered as representative of time-
dependent simulations, for example, the progression of a priori unpredictable moving phenomena in a com-
plex fixed geometry. Therefore, we consider here the problem of non-linear shock waves propagation in a
geometry, which is a generalization of the Sod’s shock tube Riemann problem. The 2D case of this example
will allow us to discuss the relevant issues of the mesh adaptation for the unsteady simulations.

Over the last few years, a rather large number of papers have been published dealing with mesh adaptation
for numerical simulations.1 In the context of steady simulations in three dimensions, several works have been
done in the case of unstructured isotropic mesh adaptation [1–4] and more recently concerning unstructured
anisotropic mesh adaptation [5–8]. However, only a small number of papers have addressed time-dependent
problems. Basically, three different approaches can be distinguished:

� adapt the mesh frequently in order to contain the solution progression within refined regions [9] and intro-
duce a safety area around critical regions [10–12]. This method is based on coarsening/refinement tech-
niques, without node displacement so as to reduce interpolation error;
� construct meshes using an unsteady mesh adaptation algorithm [13,14]. This method is based on local or

global remeshing techniques and the error is estimated every n1 flow solver time steps and the mesh possibly
adapted. Nevertheless, the mesh is actually adapted every n2 > n1 time steps;
� and more recently, use a local adaptive remeshing algorithm so as to be able to construct an anisotropic

mesh and adapt the mesh frequently in order to contain the solution evolution within refined regions
[15,16]. However, we still have to be careful with interpolation error even if the solution interpolation is
proceeded after each mesh modification.

All these approaches involve a large number of adaptations, although, they do not prevent the introduction
of errors due to the interpolation (or transfer) of the solution from the old mesh on the new one for global
remeshing algorithms. Moreover, the first and the third approaches do not control explicitly the error on
1 On a simple google query around 1000 papers can be found.
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the solution as they perform an arbitrary number of adaptations. Notice that the first one cannot be extended
to anisotropic mesh adaptation.

In this context, a new mesh adaptation scheme based on global remeshing has been proposed to control the
accuracy of the solution while reducing the number of mesh adaptations [17]. To this end, a preliminary
approach based on the resolution of a transient fixed point problem has been described. This paper also
focused on the adaptive meshing techniques and metric concern in the isotropic case. 2D results have been
presented to validate the new scheme and a first experience in 3D on a non-curved geometry has been shown.

The present paper is concentrated on the application of mesh adaptation for transient CFD simulations and
proposes an improved version of the transient fixed point-based mesh adaptation by combining the classical
mesh adaptation and the transient fixed point scheme of [17]. This new method is motivated by a theoretical
analysis in 1D on the advection equation. This is emphasized on realistic three-dimensional simulation with a
complex curved geometry. Furthermore, this paper presents mesh adaptation techniques to apply this algo-
rithm in the anisotropic case, even if only two-dimensional results are proposed. Our approach is independent
of the type of problem at hand as it is based on an anisotropic geometric error estimate [5].

To solve the non-linear problem of mesh adaptation for unsteady simulation, a novel algorithm combining
the classical mesh adaptation and the transient fixed point scheme of [17] is proposed. This new algorithm
allows a notable gain in efficiency to be obtained. Moreover, the resulting scheme has the advantage to be able
to deal with steady and unsteady simulations, in other words this scheme is a generalization of the classical
mesh adaptation algorithm.

More precisely, this automatic method is based on an implicit iterative algorithm coupling with the mesh
adaptation scheme in order to predict the solution evolution in the computational domain and to suitably
mesh all the regions of the solution’s progression. To predict the solution’s progression, the idea is to solve
at each iteration of the adaptation loop a transient fixed point problem for the mesh–solution couple.
Knowing then the solution evolution throughout a short period of time, the mesh is adapted in all the
regions where phenomena progress so as to preserve the solution accuracy. To this end, a metric intersection
in time procedure is introduced in the metric construction. In other words, the time variable is implicitly
introduced in the error estimate in order to control the error throughout the computation. As this method
gives an answer to the prediction of physical phenomena, it controls the regularity of the structures moving
in the domain.

In the following sections, we present and discuss the proposed approach. In Section 2, we recall the classical
mesh adaptation algorithm and review the main stages of the adaptation procedure in the anisotropic case. In
Section 3, motivated by a theoretical analysis on the 1D advection equation, the new mesh adaptation scheme
is proposed to overcome the drawbacks of the classical approach. The classical and the new mesh adaptation
scheme are thoroughly analyzed on the 2D model example, Section 4. Finally, in Sections 5 and 6, realistic 2D
and 3D application examples are presented to emphasize the efficiency of the proposed scheme.

2. Mesh adaptation

In this section, we will recall the classical mesh adaptation scheme and the various stages involved. More
details can be found in [5,18]. Usually, mesh adaptation provides a way of controlling the accuracy of the
numerical solution by modifying the domain discretization according to size and directional constraints. More
precisely, the goal is to equally distribute the approximation (interpolation) error in all directions over the
computational mesh.

2.1. The classical mesh adaptation scheme

For stationary problems, the classical mesh adaptation scheme aims at finding a fixed point for the mesh–
solution couple. In other words, the goal is to algorithmically converge towards the stationary solution of the
problem and similarly towards the corresponding invariant adapted mesh throughout an iterative algorithm
on a sequence of consecutively adapted meshes. This iterative scheme is illustrated in Fig. 1, where i indicates
the adaptation iteration index and where H, S, S0 and M denote the mesh, the solution, the initial solution
at each iteration and the metric, respectively.



Fig. 1. Classical mesh adaptation scheme.
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At each stage, a numerical solution is computed on the current mesh and has to be analyzed by means of an
error estimate. The mesh adaptation is based on the edge length computation with respect to a discrete aniso-
tropic metric specified at the mesh vertices. This metric is defined via a geometric error estimate that translates
the solution variations into elements sizes and directions. Next, a unit (adapted) mesh is generated with respect
to this metric. Finally, the solution is interpolated linearly on the new mesh. This procedure is repeated until
the algorithmic convergence of the solution and of the mesh is achieved.

2.2. Flow modeling

Here we consider a typical CFD simulation for flow problems modeled by the Euler equations. Assuming
that the gas is perfect, non-viscous and that there is no thermal diffusion, the Euler equations with gravity for
mass, momentum and energy conservation read:
oq
ot
þr � ðq~UÞ ¼ 0;

oðq~UÞ
ot
þr � ðq~U � ~UÞ þ rp ¼ qg;

oðqEÞ
ot
þr � ððqE þ pÞ~UÞ ¼ q~g � ~U ;
where q denotes the density, ~U the velocity vector, E ¼ T þ k~Uk
2

2
the total energy and p = (c � 1)qT the pres-

sure with c = 1.4 the ratio of specific heats, T the temperature and ~g the gravity vector.
The Euler system is solved by means of a mixed-element-volume scheme on unstructured tetrahedral

meshes [19]. The scheme is vertex-centered and uses a particular edge-based formulation with upwind ele-
ments. This flow solver employes a HLLC approximate Riemann solver to compute numerical fluxes [20].
High-order scheme is derived according to a MUSCL (monotone upwind schemes for conservation laws) type
method using downstream and upstream tetrahedra. This approach is compatible with vertex-centered and
edge-based formulations, allowing rather easy and, importantly, inexpensive high-order extensions of mono-
tone upwind schemes. This low diffusion scheme is third-order on structured meshes. The flux integration
based on the edges and their corresponding upwind elements (crossed by the edge) is a key-feature in order
to preserve the positivity of the density for vertex-centered formulation. The MUSCL type method is com-
bined with a generalization of the Superbee limiter with three entries to guarantee the TVD (total variation
diminishing) property to the scheme [21].

An explicit time stepping algorithm is used by means of a 4-stage, 3-order strong-stability-preserving (SSP)
Runge–Kutta scheme that allows us to use a CFL coefficient up to 2 [22]. In practice, we consider a CFL equal
to 1.8.
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2.3. Metric computation

We will focus here on the construction of the anisotropic metric tensor. The latter is defined at the mesh
vertices using a geometric error estimate. A least square approach is presented to compute the Hessian of
the solution and, for CFD simulations, we will describe an error estimate normalization. Finally, the intersec-
tion operation for anisotropic metrics is explained.

2.3.1. A geometric error estimate

As for the elliptic problems, we shall assume here that controlling the interpolation error allows us to con-
trol the approximation error. Hence, we deliberately based our anisotropic geometric error estimate on the
interpolation error. The error estimate aims at defining a discrete metric field that prescribes size and stretch-
ing requirements for the mesh adaptation procedure. Consequently, in an adapted mesh the interpolation
error is equally distributed in all directions. More precisely, for each mesh element K, the anisotropic error
interpolation bound involves the second derivatives of the variable u:
ku�Phuk1;K 6 cd max
x2K

max
e2EK

h~e; jHuðxÞj~ei ¼ eK ; ð1Þ
where cd is a constant related to the dimension, EK is the set of edges of K and jH uj ¼ RjKjR�1 is the absolute
value of the Hessian of the variable u (R being the matrix of eigenvectors and jKj = diag(jkij) being the abso-
lute value of the matrix of eigenvalues).

Remark 2.1. The solution can be perceived as a Cartesian surface embedded in Rdþ1, the error estimate
measuring then the gap between a piecewise linear approximation and the underlying surface. This leads to the
name of geometric error estimate, indicating also that it is problem-independent.
2.3.2. Metric definition

The natural dot product of Rn is denoted by Æ,æ. A metric tensor (or simply a metric) M in Rn is a n · n

symmetric definite positive matrix. This means that M verifies:

(i) if h~u;M~ui ¼ 0 then ~u ¼ 0;
(ii) 8~u 2 Rn, we have h~u;M~uiP 0:

From this definition, the scalar product of two vectors in Rn is defined according to a metric M as:
h~u;~viM ¼ h~u;M~vi ¼ t~uM~v 2 R:
With this notion, it is easy to define the associated norm of a vector in Rn:
k~ukM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h~u;~uiM

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
t~uM~u
p

;

which actually measures the length of the vector ~u in the metric M.
The notion of metric is equivalent to the notion of quadratic form and a metric M could be geometrically

represented by its associated unit ball, an ellipsoid, defined by EM ¼ fM j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tOM
��!

MOM
��!p
¼ 1g where O is the

centre of the ellipsoid.

2.3.3. Metric construction

A discrete metric approximation which uses the mesh vertices as support is considered. Let hmin and hmax be
the minimal and the maximal mesh element size, respectively, and let e be the desired interpolation error.
Then, according to Relation (1), we define at each mesh vertex the anisotropic metric tensor M as:
M ¼ R~KR�1; where ~K ¼ diagð~kiÞ and ~ki ¼ min max
cjkij
e
;

1

h2
max

 !
;

1

h2
min

 !
:
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Introducing a minimal and a maximal element size is a practical way to avoid unrealistic metrics. It also allows
us to control the time-stepping in the flow solver. In other words, in view of equally distributing the interpo-
lation error over the mesh, we have modified the scalar product that underlies the notion of distance used in
mesh generation algorithms (where the local metric M replaces the usual Euclidean metric).

2.3.4. Error estimate in CFD

Physical phenomena can involve large scale variations (e.g. multi-scale phenomena, recirculation, and weak
and strong shocks). It is thus difficult to capture the weakest phenomena via mesh adaptation, and even harder
to do it when, for instance in CFD, strong shocks are located in the flow because they hide weak phenomena.
Capturing such weak phenomena is crucial for obtaining an accurate solution by taking into account all phe-
nomena interactions in the main flow area.

A local error estimation can overcome this problem [23]. Relation (1) is normalized using the local absolute
value of the variable u:
u�Phu
juj�

����
����
1;K
6 c max

x2K
max
~e2EK

~e;
jH uðxÞj
juðxÞj�

~e
� �

; ð2Þ
where juj� = max(juj,�iui1,X) with �� 1 a constant. The term �iui1,X introduces a cut off to avoid dividing by
zero.

However, in the context of anisotropic mesh adaptation for compressible flow, capturing weak phenomena
by means of Relation (2) leads to mesh isotropically strong shocks. This is due to the discretization of the solu-
tion that introduces virtual oscillations in the direction parallel to the shock. These oscillations have a mag-
nitude of the same order as weak phenomena. We propose to filter these oscillations with the local gradient of
the solution in order to preserve the anisotropy. To this end, we suggest the following error estimate:
u�Phu
cjuj� þ ð1� cÞ�hkruk2

����
����
1;K
6 c max

x2K
max
~e2EK

~e;
jHuðxÞj

cjuðxÞj� þ ð1� cÞ�hkruðxÞk2

~e
� �

; ð3Þ
where �h is the diameter (i.e., the length of its largest edge) of element K and c is a parameter belongs to [0,1]
that will be considered close to zero if strong shocks are involved in the flow. Notice that c will be chosen equal
to 1 in the case of isotropic mesh adaptation.

2.3.5. Metric intersection

Previously, the metric construction for a scalar variable has been shown. However, it is often necessary to
take several variables into account in the metric construction, so as to capture different physical phenomena.
Indeed, some phenomena are only represented by specific variables. When several variables are considered,
several metrics are specified at each mesh vertex. All these metric tensors must be reduced to a single one
for mesh generation purposes. To this end, a metric intersection procedure is used. Nevertheless, these vari-
ables could have a different meaning or a different physical nature. It then becomes necessary to have dimen-
sionless variables, as for Inequality (2).

Formally speaking, let M1 and M2 be two metric tensors given at a vertex P. The metric tensor M1\2 cor-
responding to the intersection of M1 and M2 must be such that the interpolation error for each variable is
bounded by the given tolerance value. To this end, we use the simultaneous reduction of the quadratic forms
associated with the two metrics to obtain the intersected metric.

More precisely, the idea is to find a basis (e1,e2,e3) such that M1 and M2 are congruent to a diagonal matrix
in this basis, and then to deduce the intersected metric. To do so, the matrix N ¼M�1

1 M2 is introduced. N is
diagonalizable in R and the sought basis is given by the normalized eigenvectors of N denoted by e1, e2 and e3.
The terms of the diagonal matrices that are associated to the metrics M1 and M2 in this basis are obtained
with the Rayleigh formula:
ki ¼ teiM1ei and li ¼ teiM2ei; for i ¼ 1; 3:
Let P ¼ ðe1e2e3Þ be the matrix whose columns are formed by the eigenvectors {ei}i=1, 3 of N, P is invertible as
(e1,e2,e3) is a basis of R3. Therefore, we have:
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M1 ¼ tP�1

k1 0 0

0 k2 0

0 0 k3

0
B@

1
CAP�1 and M2 ¼ tP�1

l1 0 0

0 l2 0

0 0 l3

0
B@

1
CAP�1:
The resulting intersected metric M1 \M2 is given by:
M1\2 ¼M1 \M2 ¼ tP�1

maxðk1; l1Þ 0 0

0 maxðk2; l2Þ 0

0 0 maxðk3; l3Þ

0
B@

1
CAP�1:
Geometrically speaking, let M3 be the set of the 3 · 3 metric tensors, then the simultaneous reduction gives the
largest ellipsoid included in the geometrical intersection of the two ellipsoids associated to the metrics M1 and
M2 (cf. Fig. 2):
EM1\2
¼ sup

Mi2Md

EMi � EM1
\ EM2

:

2.3.6. Evaluation of the Hessian matrix

The bound of the interpolation error, Relation (1), involves the Hessian matrix of the exact solution u of the
problem, and therefore, it appears in the construction of the metric. Indeed, constructing a good (reasonable)
metric requires computing the Hessian matrix accurately. But, practically, only the discrete solution of the
problem uh is available and the exact one u is not known. Moreover, in our case, uh is only piecewise linear.

In order to evaluate the Hessian matrix, the idea is to reconstruct a high order solution u* from uh that is
two times derivable and to approximate the approximation error by the gap between the discrete and recon-
structed solutions:
ku� uhk � ku	 � uhk:

By analogy with Relation (1), we have the following bound:
ku	 �Phu	k1;K 6 c max
x2K

max
e2EK

h~e; jHu	 ðxÞj~ei; ð4Þ
where the right-hand side term is known. Notice that in practice, it is not necessary to reconstruct explicitly u*,
it is enough to evaluate the Hessian of u*. Here, we propose an approach based on a Taylor expansion and the
solving of a linear system by means of a least-squares approximation.
Views illustrating the metric intersection procedure with the simultaneous reduction in three dimensions. In red, the resulting
of the intersection of the blue and green metrics. (For interpretation of the references to color in this figure legend, the reader is
d to the web version of this article.)
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Let P be a mesh vertex and let BðP Þ be the ball of P (i.e., all mesh vertices connected to the vertex P). By
considering a Taylor expansion of u* at a vertex P i 2 BðP Þ and truncated at the order 2, we can write the fol-
lowing relation:
2 Th
three d
u	i ¼ u	 þ PP i
�! � ru	ðP Þ þ 1

2
ht PP i
�!

;H u	 ðP ÞPP i
�!i () 1

2
ht PP i
�!

;Hu	 ðP ÞPP i
�!i ¼ u	i � u	 � PP i

�! � ru	ðP Þ
with the notations u* = u*(P) and u	i ¼ u	ðP iÞ. This relation can be developed as follows:
1

2
ax2

i þ 2bxiyi þ 2cxizi þ dy2
i þ 2eyizi þ fz2

i

� �
¼ u	i � u	 � ðaxi þ byi þ cziÞ; ð5Þ
using the notations:
PP i
�! ¼ xi

yi

zi

0
B@

1
CA; ru	ðPÞ ¼

a

b

c

0
B@

1
CA and H u	 ðP Þ ¼

a b c

b d e

c e f

0
B@

1
CA:
This leads to a usually over-determined system2 of the form:
AX ¼ B; with tX ¼ a b c d e fð Þ;
where A is a n · 6 matrix ðn ¼ CardðBðP ÞÞÞ function of (xi,yi,zi) and B is a vector of dimension n given by the
right-hand side of the Relation (5), and function of (a,b,c,xi,yi,zi,u,ui). This system is solved using a least-
square approximation, i.e., it consists in minimizing the distance between the vectors AX and B of Rn by min-
imizing the square of the Euclidean norm of their difference. The problem is then to:
Find X 2 R6 such that kAX � Bk2 ¼ inf
Y2R6
kAY � Bk2

:

It can be shown that the solution of this problem is the solution of the linear 6 · 6 system of normal equations:

tAAX ¼ tAB:
The latter is then solved using a standard Gauss method.

Remark 2.2. If, in some peculiar cases, the system is under-determined (i.e., CardðBðP ÞÞ < 6), additional
vertices connected to the vertices of BðP Þ can be taken into account.
2.4. Mesh adaptation

In our approach, the adaptation of the current mesh is based on the specification of a discrete anisotropic
metric tensor at each vertex. For these purposes, the standard Euclidean scalar product is modified according
to a proper metric tensor field M. The aim is then to generate a mesh such that all edges have a length of (or
close to) one in the prescribed metric and such that all elements are almost regular. Such a mesh is called a unit

mesh. Let P be a vertex and let MðPÞ be the metric at P, the length of the edge PX with respect to MðP Þ is
defined as:
lMðPÞðPX Þ ¼ hPX
�!

; PX
�!i12MðP Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t PX
�!

MðP ÞPX
�!q

:

As the metric is not uniform over the domain, we need to consider the metrics at the edge endpoints as well as
all intermediate metrics along the edge. To achieve this, we assume that an edge PX has a local parametriza-
tion PX ¼ P þ t PX

�!
and we introduce its average length as:
lMðPX
�!Þ ¼ Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t PX
�!

MðP þ t PX
�!ÞPX

�!q
dt: ð6Þ
e system is overdetermined as six coefficients must be computed and the vertex P is usually connected to more than six vertices Pi in
imensions.
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If we remember that the metric M has been defined such that lMðPX
�!Þ ¼ 1, the desired adapted mesh is then a

unit mesh in the metric M.
Here, we consider the generation of adapted meshes in three dimensions as a two-step process. At first the

surface mesh is adapted using local modifications [24], then an adapted volume mesh is created using a con-
strained Delaunay algorithm [25]. Notice that, during the point insertion phase of the volume mesh genera-
tion, most of the vertices of the previous mesh are reused for cpu concerns. This could reduce interpolation
errors but in practice kept vertices are mostly in non-critical area.

2.4.1. Mesh gradation control

As the mesh is intended for finite element or finite volume computations, the mesh size variation is also a
major concern. To control the mesh size variation or mesh gradation, a correction of the metric field that gov-
erns the mesh generation is performed [26]. The metric field is modified such as the size variation between two
neighboring elements prescribed by the metric is bounded by a given threshold value hgrad. This process allows
the mesh variation to be smoothed and controlled, resulting in an improved quality of the mesh.

2.4.2. Surface mesh adaptation

Given a discrete surface (a piecewise linear approximation of the domain boundaries) and a discrete metric
field, the aim is to generate an adapted mesh with respect to this metric and the geometry. To do so, the
approach we use consists in modifying iteratively the initial surface mesh so as to complete a unit mesh for
both constraint.

As we assume that no CAD modeler is available, an internal G1 (tangent plane continuity) continuous geo-
metric support is constructed, using a local parametrization at the mesh vertices. Then, a geometric metric
tensor G is defined at the mesh vertices representing the local principal curvatures and directions [24], G is used
to control the geometrical approximation.

Actually, this geometric metric G has to be intersected with the computational metric M (Section 2.3) in
order to adapt the surface mesh to the solution and the local curvatures of the geometry. In turn, this metric
G \M must be modified to account for the desired mesh gradation. The resulting metric ~M is used to govern
all surface mesh modifications.

The ingredients to comply with these requirements typically include mesh enrichment, mesh coarsening and
local mesh optimization procedures. The local mesh modification operators involved are: edge flipping, edge
collapsing, edge splitting, node repositioning and degree relaxation.

The surface mesh modification algorithm is pretty straightforward, edge lengths are computed with respect
to the metric ~M and edges that are considered small are collapsed while edges that are considered long are split
into unit length segments. Edge flips and node repositioning operations are performed to improve the overall
size and shape mesh quality [24].

2.4.3. Volume mesh adaptation

Once the surface mesh has been adapted, a unit volume mesh is generated with respect to the modified met-
ric ~M. In our case, an empty mesh (with no internal vertices) is first built by means of a constrained Delaunay
procedure due to the boundary enforcement. Then, based on an edge length analysis, internal nodes are added
into the current mesh (most of them coming from the background mesh, at the previous iteration) using the
Delaunay kernel. This procedure has been thoroughly detailed in Ref. [25].

2.5. Solution interpolation

Solution interpolation or solution transfer is also a key point in the mesh adaptation algorithm. The aim is
to recover the solution field after generating a new adapted mesh. As we have a discrete solution field, we need
an interpolation scheme to transfer this information from the current mesh to the newly adapted mesh.

During the interpolation stage, two problems have to be taken into account. Firstly, the new vertices are
located in the background mesh by identifying the elements containing them. This can be solved by moving
inside the oriented mesh by using its topology, thanks to a barycentric coordinates-based algorithm [18]. Sec-
ondly, once the localization has been solved, an interpolation scheme is used to extract the information from
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the solution field. In our case, as the solution is considered piecewise linear by elements (because the solution is
defined only at the mesh vertices) we utilize a classical P1 interpolation scheme.

3. Mesh adaptation based on a transient fixed point

In this section, before presenting our new mesh adaptation algorithm designed for transient problem, let us
carry out an error analysis on the simple linear transport equation in one dimension. Then, we will expose the
problematic related to the classical mesh adaptation scheme and present our new approach.

3.1. Controlling the time error

We analyze the error in time obtained with two finite volume schemes with an explicit discretization in time
on the transport equation (a first order hyperbolic problem) in one dimension:
ut þ cux ¼ 0; ð7Þ

with c > 0. Let xj for j = 1, . . . ,N be a uniform spatial discretization of the one-dimensional domain and let tn

for n = 0, . . . ,T be a uniform time discretization. For each vertex xj at time tn, we have un
j � uðxj; tnÞ.

Remark 3.1. In one dimension and uniform meshes, finite volume scheme are equivalent to finite difference
scheme.
3.1.1. A first order scheme

Let us consider the well known explicit first order upwind method:
unþ1
j � un

j

Dt
þ c

un
j � un

j�1

Dx
¼ 0: ð8Þ
Using Taylor expansion, the local truncation error sn
j is given by:
sn
j ¼ c

Dx
2

uxxðxj; tnÞ �
Dt
2

uttðxj; tnÞ þ OðDx2;Dt2Þ:
An estimation of the spatial and the time error is provided by the first term and the second term, respectively
(indices are omitted for clarity):
eðDxÞ ¼ c
Dx
2

uxx and eðDtÞ ¼ �Dt
2

utt:
From Eq. (7), we deduce utt = c2uxx therefore
eðDtÞ ¼ �c2 Dt
2

uxx:
Now, we trivially deduce that the time error is bounded by the spatial error under the CFL condition. Indeed,
the CFL condition is m ¼ cDt

Dx 6 1 implies that:
jeðDtÞj 6 jc Dx
2

uxxj ¼ jeðDxÞj:
However, as presented in Section 2.2, we use for our numerical simulation a third-order solver. In the follow-
ing, the same analysis will be done for this scheme.

3.1.2. Finite volume discretization

For the finite volume approach, a cell Cj is defined as the interval ½xj�1
2
; xjþ1

2

 where xj�1

2
¼ xjþxj�1

2
and

xjþ1
2
¼ xjþ1þxj

2
.

Let U = {uj} be the unknown vector which has for components the approximation of the function u(x) at
each vertex xj of the mesh. Then, the vector W(U) that is the spatial approximation of (f(u))x = c ux is con-
structed, it reads:
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WjðUÞ ¼
Ujþ1

2
� Uj�1

2

Dx
; ð9Þ
where U is a numerical flux function given by:
Uj�1
2
¼ Uðuj�1

2
� ; uj�1

2
þÞ and Ujþ1

2
¼ Uðujþ1

2
� ; ujþ1

2
þÞ;
where u
j�1

2
� are the values of u at the boundaries of the cell Cj. Moreover, we impose to U to be consistent with

the flux f(u): "u, U(u,u) = f(u). Scheme (9) is called upwind in the sense of Harten, Lax and Van Leer [27] if the
numerical flux function U verifies:
Uðu; vÞ ¼ 1

2
ðf ðuÞ þ f ðvÞ � dðu; vÞÞ;
with dðu; vÞ ¼ jf 0ðuþv
2
Þjðv� uÞ þ oðju� vjÞ.

We notice that the expression of U is composed with a centered term and the term d(u,v) that contains the
numerical internal viscosity of the scheme. To control this viscosity, a parameter d is introduced, thus the flux
function Ud writes:
Udðu; vÞ ¼ 1

2
ðf ðuÞ þ f ðvÞ � ddðu; vÞÞ:
In the linear case where f(u) = cu with c > 0, d(u,v) is defined by : d(u,v) = c(u � v) and the numerical flux
function is reduced to:
Udðu; vÞ ¼ c
2
½ð1þ dÞuþ ð1� dÞv
:
For d = 1, we have: U1(u,v) = c u. It results:
Wd
j ðUÞ ¼

c
2Dx

ð1þ dÞujþ1
2
� þ ð1� dÞujþ1

2
þ � ð1þ dÞuj�1

2
� � ð1� dÞuj�1

2
þ

	 

: ð10Þ
3.1.3. Explicit time discretization

A temporal integration of the same order as the spatial discretization is required as we deal with time
dependent simulation. To this end, we propose to use to high-order explicit multi-step Runge–Kutta method
that has been proposed in [28]. Such methods are qualified as strong-stability-preserving (SSP) time discreti-
zation methods which have a non-linear stability property that makes them particularly suitable for the inte-
gration of hyperbolic conservation laws where discontinuous behavior is present.

The optimal order 3 SSP Runge–Kutta scheme with 3-steps is given by:
U ð1Þ ¼ Un þ DtLðU nÞ;

U ð2Þ ¼ 3

4
U n þ 1

4
U ð1Þ þ 1

4
DtLðU ð1ÞÞ;

Unþ1 ¼ 1

3
U n þ 2

3
U ð2Þ þ 2

3
DtLðU ð2ÞÞ:
The discretization of the advection equation (7) leads to a system of ordinary differential equations:
U t þWðUÞ ¼ 0;
which is solved with the previous SSP Runge–Kutta scheme utilizing L = �W. In the linear case where
f(u) = cu, W could be linearly expressed in function of u. Consequently, we introduce a linear operator k such
that: W = �ku. Therefore, we deduce for the order 3 SSP Runge–Kutta:
unþ1 � un

Dt
¼ kun þ k2 Dt

2
un þ k3 Dt2

6
un: ð11Þ
3.1.4. Low diffusion scheme

Now, let us define the interpolation of the values of u
j�1

2
� of u(x) at the boundaries of the volume cells Cj.

The values u
j�1

2
� are constructed by means of first order Taylor expansion of u(x), we obtain:
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ujþ1
2
� ¼ uj þ

1

2
½ð1� bÞðujþ1 � ujÞ þ bðuj � uj�1Þ
;

ujþ1
2
þ ¼ ujþ1 �

1

2
½ð1� bÞðujþ1 � ujÞ þ bðujþ2 � ujþ1Þ
;

uj�1
2

� ¼ uj�1 þ
1

2
½ð1� bÞðuj � uj�1Þ þ bðuj�1 � uj�2Þ
;

uj�1
2
þ ¼ uj �

1

2
½ð1� bÞðuj � uj�1Þ þ bðujþ1 � ujÞ
:
Substituting these values in Eq. (10), we get:
Wd
j ðUÞ ¼

c
4Dx
½ð1þ dÞbuj�2 � 2ð1þ bþ 2dbÞuj�1 þ 6dbuj þ 2ð1þ b� 2dbÞujþ1 � ð1� dÞbujþ2
: ð12Þ
Now, we consider Taylor expansion of the function u about xj, from the previous relation we have:
WdðUÞ ¼ c ux þ ð1� 3bÞDx2

6
uxxx þ db

Dx3

4
uxxxx

� �
þ OðDx4Þ;¼ �ku
Therefore, the linear operator k is defined by:
k ¼ �c
o

ox
þ ð1� 3bÞDx2

6

o3

ox3
þ db

Dx3

4

o4

ox4

� �
þ OðDx4Þ; ð13Þ
and thus,
k2 ¼ c2 o2

ox2
þ ð1� 3bÞDx2

3

o4

ox4

� �
þ OðDx3Þ; ð14Þ

k3 ¼ �c3 o
3

ox3
þ OðDx2Þ: ð15Þ
The expression of k determines the spatial approximation of the convective flux (f(u))x.

3.1.5. A third order scheme

From the previous analysis, by fixing the parameters d and b to 1 and 1/3, respectively, we get an upwind
third-order scheme in space and in time. Indeed, by using Taylor expansion of un+1 around tn in the left-hand
side term of Relation (11) and by substituting the values of k in the right-hand side term with equalities (13)–
(15), we obtain:
ut þ cux ¼ c2 Dt
2

uxx � c3 Dx2

6
uxxx � c

Dx3

12
uxxxx �

Dt
2

utt �
Dt2

6
uttt �

Dt3

24
utttt þ OðDt4;Dx4Þ:
Using the advection equation, the previous relation is simplified to:
ut þ cux ¼ �c
Dx3

12
uxxxx �

Dt3

24
utttt þ OðDt4;Dx4Þ:
An estimation of the spatial and the time error is provided by the first term and the second term of the right-
hand side, respectively (indices are omitted for clarity):
eðDxÞ ¼ �c
Dx3

12
uxxxx and eðDtÞ ¼ �Dt3

24
utttt:
From Eq. (7), we deduce utttt = c4uxxxx therefore
eðDtÞ ¼ �c4 Dt3

24
uxxxx:
Finally, we deduce that the time error is bounded by the spatial error under the CFL condition. Indeed, the
CFL condition is m ¼ cDt

Dx 6 1 implies that:
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jeðDtÞj 6 jc Dx3

24
uxxxxj 6 jeðDxÞj:
In conclusion, this simple mono-dimensional study on the advection equation shows that the time error is con-
trolled by the spatial error under the CFL condition. Therefore, if the spatial error is bounded by a threshold
value at each time step throughout a mesh adaptation process, then the time error is also bounded by this
threshold.

To analyze mesh adaptation schemes, let us introduce the notion of characteristic time frame for a mesh.

Definition 3.1. The characteristic time frame s of a mesh can be defined as the largest period of time throughout
which the spatial error remains bounded (or equally distributed) by a given value.

Notice that s can be expressed as a function of the desired interpolation error e, the mesh gradation hgrad,
the minimal mesh size hmin and ~UðtÞ the speed of physical phenomenon at time t : s ¼ f ðe; hgrad; hmin; ~UðtÞÞ:

3.2. Classical mesh adaptation algorithm

The classical mesh adaptation algorithm (cf. Section 2.1) consists in finding a fixed point for the mesh–solu-
tion couple. It seems obvious that this algorithm is intrinsically inappropriate to study time-dependent phe-
nomena because of their arbitrary progression in the computational domain. Indeed, in such approach the
mesh is always ‘‘left behind’’ with respect to the solution. In other words, this algorithm introduces small per-
turbations in the resolution of an unsteady problem because of the shift between the solution and the metric.
This implies that we are not guaranteeing to control the spatial error. Consequently, the accuracy of the
numerical solution is closely related to the matching between the characteristic time frame s, and the frequency
the mesh is adapted. Another problem is that the adequate number of adaptations is not known a priori, it is
problem-dependent. Therefore, an arbitrary choice is made by the user.

More precisely, if an insufficient number of mesh adaptations is performed, then at each mesh adaptation
iteration the solution time increment is Dt which is greater than s. Then, the spatial error is no more con-
trolled. Practically, the solution is diffused.

On the other hand, if Dt ¼ OðsÞ (in general, 5–20 time steps of the flow solver are sufficient), we could expect
the solution to be more accurate. Nevertheless in this case, relatively to each mesh modification, a source of
error due to the interpolation (or transfer) of the solution from the old mesh on the new one is introduced.
Therefore, for ‘‘long time’’ computation this affects the solution’s accuracy.

These two cases will be discussed in Section 4.

3.3. Unsteady mesh adaptation algorithm

In time-dependent simulations, we are faced with the problem of the random progression of physical phe-
nomena in the domain. From the error analysis in Section 3.1, we saw that for explicit algorithm under CFL
condition the error in space control the error in time, consequently to control the solution accuracy we have to
control the error in space throughout a given time frame of computation. Moreover, we have to propose an
automatic approach complying with the problem, regardless of the number of desired adaptations. In other
words, in this approach the choice of the number of mesh adaptations does not depend on the considered sim-
ulation and has no or just a slight impact on the accuracy of the numerical solution. Finally, the number of
mesh adaptations has to be reduced to minimize the errors due to the solution interpolation (or transfer) stage.
To this end, we propose a new transient fixed point mesh adaptation algorithm.

This transient fixed point mesh adaptation algorithm combines the classical mesh adaptation scheme and
the fixed point coupling scheme of [17], that allows a notable gain of efficiency to be obtained. Therefore, it is a
generalization of the classical mesh adaptation method. In particular, this improved algorithm is able to deals
with steady and unsteady simulations.

This scheme predicts the solution evolution in the computational domain and suitably meshes all the
regions of the solution’s progression by means of an iterative implicit algorithm. This answer to the physical
phenomena prediction allows us to control the spatial error during the resolution. More formally, the number
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of adaptations has to be reduced while the solution accuracy must be preserved, in an attempt to avoid refining
an excessively large part of the domain. In other words, the aim is to control and increase the characteristic
time frame of the mesh (cf. Definition 3.1). This leads into the introduction of the time in the metric
construction.

3.3.1. Unsteady adaptation scheme

In order to predict the progression of physical phenomena, a new mesh adaptation algorithm is proposed in
which the principle is to solve a transient fixed point problem for the mesh–solution couple at each iteration of
the mesh adaptation loop. This iterative algorithm consists of two steps: the main adaptation loop and an
internal loop in which the transient fixed point problem is solved. At each iteration of the main adaptation
loop, we consider a time period [t, t + Dt] in which the solution evolves. Throughout this period, we try to
algorithmically converge to the solution at t + Dt and (in a certain way) to the associated adapted mesh. In
other words, from the solution at time t, we compute the solution to time t + Dt, and the computation is iter-
ated via the internal loop until the desired accuracy is obtained for the solution at t + Dt, i.e., two consecutive
solutions of the internal loop are close to each other (see Relation (16)). Similarly, we algorithmically converge
towards the corresponding invariant mesh adapted to this period [t, t + Dt] throughout a sequence of consec-
utively adapted meshes. Hence, the solution behavior is predicted in all the regions of the domain where the
solution evolves. Therefore, a metric which takes into account the solution progression could be defined by
means of an intersection procedure in time (cf. Section 3.3.2). Then, a new mesh is generated according to this
metric field. Finally, the initial solution of this period is interpolated and the computation is resumed. This
scheme is illustrated in Fig. 3, where i and j indicate the main and the internal loop index, respectively, and
where H, S, S0 and M are the mesh, the solution, the initial solution at each iteration and the metric,
respectively.

Notice that this novel algorithm is obtained by combining the classical mesh adaptation and the transient
fixed point scheme of [17]. Indeed, if you choose 0 internal iteration then no mesh adaptation is performed
with the algorithm of [17], whereas with the novel scheme you obtain the classical mesh adaptation algorithm.
Thus, it can be applied to steady and unsteady simulations. In summary, this novel algorithm can be perceived
as a generalization of the classical approach. And more technically, between two periods of time, the adapted
mesh used with the new scheme to make the first computation has a reduced size as it is adapted only to the
solution at time t implying a gain in efficiency.
Fig. 3. Modified mesh adaptation scheme for time-dependent simulations.
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At each internal iteration, the final solution of the period (i.e., at t + Dt) of the previous and the current
iteration, denoted Sði;jÞ and Sði;jþ1Þ respectively, are compared to analyze the algorithmic convergence of
the solution in the internal loop. To this end, we consider the L1 norm of the difference of the consecutive
solutions for CFD simulation. Indeed, the L1 norm gives the mean behavior of the solution without focussing
too much on the discontinuities of the flow. Moreover, we know from the TVD theory that the good space for
the convergence of numerical schemes for scalar hyperbolic conservation laws is L1

loc, thus the space L1 is
adequate.

If the difference is lesser than the given threshold value, the algorithmic convergence is considered reached,
the external main adaptation loop is resumed. Otherwise the computation is restarted. Let � be the given
threshold value. The transient fixed point problem is solved until:
kSði;jþ1Þ �Sði;jÞkL1ðXÞ

kSði;jþ1ÞkL1ðXÞ
6 �; ð16Þ
where X is the computational domain. The difference between two fields is computed by transferring (interpo-
lating) fields on the same mesh, i.e., here the difference is computed on Hði;jÞ and on Hði;jþ1Þ, then the mean of
the two obtained values is utilized.

3.3.2. Metric intersection in time

Although the new mesh adaptation scheme is able to predict the solution behavior, we still have to specify
the procedure to suitably mesh all the regions where the solution evolves. To this end, we introduce a metric
intersection procedure in time.

As a physical phenomenon progresses in a well-defined region during a given time, a mesh with appropriate
element sizes is needed in order to achieve an accurate solution in such region. The metric field must reflect this
information, i.e., the time must be considered in the metric construction. For these purposes, all the interme-
diate solution metrics, throughout the time period [t, t + Dt], have to be taken into account to mesh suitably all
this region so as to control the error of the solution throughout this time period. Indeed, it is well known that a
contact discontinuity is not compressive like a shock wave. Therefore, if a contact discontinuity is getting
thicker on a coarser mesh area then it will be impossible to retrieve a finer one for the rest of the computation
with a MUSCL type scheme.

In order to solve this problem, for each variable used in the metric construction, an intersection of the rel-
ative metrics (related to the successive solutions in time) is introduced. Formally speaking, the metric tensor, at
the ith time period [t, t + Dt] (corresponding to the ith main adaptation iteration) and at the jth internal loop
iteration, is given by:
Mði;jÞ ¼
\

h2½t;tþDt

Mði;jÞðhÞ; ð17Þ
where ˙ is the metric intersection operation defined in Section 2.3, Mði;jÞðhÞ is the intermediate metric given by
the numerical solution at time h 2 [t, t + Dt] and Mði;jÞ is the resulting metric utilized to adapt the mesh. Prac-
tically, it is sufficient to consider only a certain number of metrics provided by intermediate solutions, uni-
formly distributed between the initial and the final solutions of the time period, to mesh the regions at
hand. Therefore, the metric tensor, at the ith time period and at the jth internal loop iteration, reads:
Mði;jÞ ¼
\m
k¼1

Mk
ði;jÞ;
where Mk
ði;jÞ is the kth intermediate metric given by the numerical solution.

Remark 3.2. This metric definition ensures that for all the solutions throughout the time period the
interpolation error for each element remains bounded by the prescribed threshold value e, until hmin is not
reached. Nevertheless, for each solution the interpolation error is no longer equally distributed. The adapted
meshes are not ‘‘optimal’’ for one solution at a given time, but we can consider that they are ‘‘pseudo-optimal’’
for the computation along this period.



F. Alauzet et al. / Journal of Computational Physics 222 (2007) 592–623 607
4. Application to the model problem

In this section, we will apply and study the behavior of the classical mesh adaptation and the transient fixed
point mesh adaptation to a model problem of non-linear waves propagation in a complex geometry. To this
end, we will describe the computation of the reference solution for the model problem and define how to com-
pute the gap to this solution. Then, we will analyze the results obtained with the classical approach and
emphasize the problematic related to this approach (cf. Section 3.2). Secondly, the new mesh adaptation
scheme will be applied and analyzed on this problem. Finally, the impact of anisotropic mesh adaptation will
be discussed.

4.1. Non-linear waves propagation as a model problem

As a model problem of unsteady simulations, we consider here the two-dimensional simulation of non-lin-
ear shock waves propagation in a complex geometry (a city plaza) modeled by the Euler equations for com-
pressible flows, Section 2.2. This simulation can be perceived as a multi-dimensional generalization of the Sod
Riemann problem [29] in a geometry. We deliberately choose, as model problem, the example already pro-
posed in [17] to point out the limitations of the classical mesh adaptation scheme and the improvements of
the new approach. More precisely, an initial Heavyside perturbation (high pressure and density region) is
introduced in a uniform field (the ambient air). The main feature of such problem is related to the random
character of the propagation and thus to the difficulty of predicting the phenomenon behavior and the shocks’
interactions.

The computational domain size is 150 · 90 m2 and the relevant parameters are q = 0.125, p = 0.1 and
u = v = 0, q, p and ~U ¼ ðu; vÞ representing the density, the pressure and the velocity vector, respectively. In
the high pressure region (delimited by the square [65,67.5] · [0,2.5]), the initial conditions are: q = 1, p = 1
and u = v = 0.

To analyze the mesh adaptation schemes, we will compare the obtained adapted solutions with a reference
solution. As this model problem has neither simple nor known analytical solution, the reference solution is
computed on a highly refined constant size mesh. To this end, the relative error between two solutions u
and v is given by the following formula:
ferrðu; vÞ ¼
2ku� vkX
kukX þ kvkX

; ð18Þ
where i Æ iX is a suitable norm (here the L1 norm) in the domain X.

Definition 4.1. An unstructured uniform mesh of size h (i.e., all edges having a constant size h) is a reference

mesh if ferr(uh/2,uh) 6 e, where uh/2 and uh denote the solutions obtained on the mesh of size h/2 and h,
respectively, and e� 1 is a constant.

In other words, on the reference mesh the solution is mesh independent. The numerical solution obtained
on a such mesh is called reference solution to tolerance e.

4.1.1. Computing the reference solution

For a mesh of constant size h equal to 30 cm, a relative error ferr(uh/2,uh) 6 0.0012 in L1(X) norm is
obtained. Therefore, we can consider this solution as a reference solution. Nevertheless, for practical reasons,
we consider here, as reference mesh, the mesh of constant size href equal to 15 cm (1,412,782 vertices). The
error obtained with several uniform meshes are reported in Table 1.

Notice that the convergence is not evident in L2 norm. This is illustrated by the fact that the error in L2

norm committed on the mesh with a size of 2href is lower than the one with a size of 4/3href. This is due to
the higher weight of the singularities in the L2 norm which are mesh dependent in the region where the explo-
sion start.

From the above results, we deduce that the physical phenomena progression will be correctly predicted and
accurately captured if the numerical solution u is ‘‘close to’’ the reference solution uref in the sense that it
verifies:
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kuref � ukL1ðXÞ

kurefkL1ðXÞ
6 0:0012 and

kuref � ukL2ðXÞ

kurefkL2ðXÞ
6 0:008: ð19Þ
4.2. Numerical study

The goal is to compute the solution at the physical time tmax = 0.2 s for the model problem. In each adap-
tive computation, the density variable has been chosen as criterion for adapting the mesh with the following
parameters:
e ¼ 0:001; hmin ¼ 0:15 m; hmax ¼ 20 m and hgrad ¼ 4;
where e is the prescribed error threshold, hmin and hmax are the minimal and the maximal element size, respec-
tively, and hgrad is the mesh gradation. The initial mesh, adapted to the initial conditions, contains 1317 ver-
tices and 2467 triangles. For each simulation, tables report:

� the number nadap of mesh adaptations,
� the number of vertices np and the number of triangles ne of the final mesh,
� the overall cpu time t cpu, each simulation has been carried out in serial on a Macintosh G5 with 2.5 GHz

PowerPC processor and 1 GB of memory,
� the error in L1 norm and L2 norm with respect to the reference solution for the density.

The aim of this section is to illustrate the limitation of the classical mesh adaptation approach and to val-
idate the new mesh adaptation approach to the model problem of non-linear waves propagation.

4.2.1. Limitation of the classical mesh adaptation

The classical mesh adaptation algorithm has been applied to the model problem with 20, 40, 60, 100, 200,
300 and 400 mesh adaptations. The final meshes statistics and the error relative to the final solutions (density)
on X are reported in Table 2. The results analysis classified them in three categories: the time increment Dt

between two adaptations is larger than or almost or lower than the mesh characteristic time frame s. In the
following, each case is analyzed in detail.

Firstly, let us analyze the case where 20 mesh adaptations are performed corresponding to a time increment
Dt = 0.01 s between two adaptations. The final adapted mesh obtained has a size two orders of magnitude
2
ics of the final adapted meshes for the classical approach with 20, 40, 60, 100, 200, 300 and 400 mesh adaptations and the errors
e to the final solutions (density) on X

np ne t cpu k � kL1ðXÞ k � kL2ðXÞ

11,801 23,155 2 min 0.0037 0.0101
15,853 31,211 3 min 30 s 0.0029 0.0091
18,561 36,651 5 min 0.0027 0.0088
21,621 42,769 8 min 0.0026 0.0085
23,266 46,079 13 min 0.0026 0.0080
22,259 44,069 18 min 0.0031 0.0095
21,148 41,855 19 min 0.0032 0.0099

1,412,782 2,819,770 5 h – –

1
ics related to the uniform meshes of sizes 8/3href, 4/3href and 2href and final solution (density) error on X

Vertices Triangles k � kL1ðXÞ k � kL2ðXÞ

192,993 383,931 0.017 0.0096
353,799 704,719 0.0011 0.0072
767,851 1,531,612 0.008 0.0077
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smaller than the reference mesh, and consequently so does the cpu time. Nevertheless, the solution is not fully
satisfactory. Indeed the L1 error is three times higher than the previously error given threshold value, Relation
(19). This drawback is mainly related to the insufficient number of mesh adaptations. Fig. 5 shows the evolu-
tion of the reference solution and the solution after 20 mesh adaptations. We can observe that the adapted
solution is diffused because the mesh is left behind the solution. This problem is emphasized in Fig. 6, where
the solution (density) profile is given along two arbitrary lines. Notice that the mesh resolution decreases as the
number of adaptations increases (Fig. 4).

Secondly, we consider the case where the mesh is frequently adapted in order to avoid the problem of the
latency of the mesh with respect to the solution: 200 adaptations are performed corresponding to a time incre-
ment Dt = 0.001 s (approximatively every 5 flow solver time steps) between two mesh adaptations. The final
adapted mesh size is about 60 times smaller than the reference mesh and the computational time has been
divided by 25. Here, as the shock waves are confined in the refined regions of the adapted mesh, the number
of adaptations can be considered as sufficient. Despite the fact that the time increment Dt is almost or smaller
than the mesh characteristic time frame s, the solution obtained is not fully satisfactory. Indeed, the L1 error is
2 times higher than the given error threshold value. Fig. 5 shows the evolution of the reference solution and the
Fig. 4. The progression of adapted meshes at different time 0.1 and 0.2 s. From top to bottom, the adapted meshes with 20 classical mesh
adaptations, 200 classical mesh adaptations and 20 transient fixed point mesh adaptations.



Fig. 5. The progression of density iso-lines at different time 0.1 and 0.2 s. From top to bottom, the solutions with the reference mesh, 20
classical mesh adaptations, 200 classical mesh adaptations and 20 transient fixed point mesh adaptations.
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solution after 200 mesh adaptations. The amplitude of strong phenomena is preserved, such as shock waves,
but weak phenomena have been lost. Notice that the adapted meshes resolution is preserved along the adap-
tations (cf. Fig. 4).

Finally, a very large number of adaptations is performed: 300 and 400 adaptations are done corresponding
to approximatively every 3 and 2.5 flow solver time steps between two mesh adaptations, respectively. Now,
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we notice that in this case the L1 error increases with the number of mesh adaptations, Table 2. This error is
due to the large number of solution interpolations (or transfers) in the adaptation scheme. Indeed, mesh solu-
tion interpolation is an important source of error especially if the mesh connectivity is dramatically changed
from one mesh to the other that diffuses the solution. Such error becomes dominant as the number of inter-
polations increases, thus resulting in an increase of the error. Moreover, these simulations show that the cpu
time increases with the number of adaptations confirming that a very large number of adaptations penalizes
the global cpu time of the simulation.

As expected, the previous cases study allow us to conclude that the classical mesh adaptation scheme is not
really suitable for time-dependent simulations for hyperbolic systems of conservation laws. Indeed, the accu-
racy of the numerical solution cannot be explicitly controlled, whatever the adopted strategy.

4.2.2. Transient fixed point mesh adaptation
The new adaptive approach has been applied to the model problem with 10, 20 and 30 mesh adaptations,

i.e., the simulation’s time frame is decomposed into 10, 20 and 30 periods, corresponding to a period step Dt

equal to 0.02, 0.01 and 0.0066 s, respectively. 13, 7 and 5 uniformly distributed intermediate solutions (includ-
ing the initial and the final one) are considered for the metric intersection in time, respectively. In the internal
loop, a maximum of five iterations are performed and the threshold value is set to � = 0.0002. The final meshes
statistics and the error relative to the final solutions (density) on X are reported in Table 3. In the following, we
discuss in detail the results of the simulation with 20 adaptations.

With 20 mesh adaptations, the final adapted mesh contains 87,471 vertices that is 16 times less than the
reference mesh size. Consequently, the cpu time has been divided by a factor of 9. From a practical point
of view, in the internal loop, three iterations are sufficient to achieve the solution’s algorithmic convergence
in the period, i.e., the desired accuracy of the solution at t + Dt. Table 3 reports the L1 and L2 errors that
are almost the prescribed error threshold values, Relation (19). Therefore, the resulting solution is close to
the reference solution. The comparison between the reference solution and the adapted solution is presented
in Fig. 5. The intensity of the solution has been preserved and we have captured more details in the flow than
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Fig. 6. Left, density values of the solution at time tmax = 0.2 s along the lines of equation y = 3.07692x � 17.4615. The reference solution
(black) and the adapted solution with 20 classical mesh adaptations (green), 200 classical mesh adaptations (blue) and 20 transient fixed
point mesh adaptations (red) are compared. Right, the initial mesh with the extraction line (in red). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Statistics of the final adapted meshes for the unsteady approach with 10, 20 and 30 mesh adaptations and the errors relative to the final
solutions (density) on X

nadap np ne t cpu k � kL1ðXÞ k � kL2ðXÞ

10 140,364 279,897 49 min 0.0011 0.0071
20 87,134 173,612 26 min 0.0012 0.0075
30 69,670 138,748 26 min 0.0014 0.0070
Href 1,412,782 2,819,770 5 h – –



Fig. 7. Final adapted mesh for the unsteady approach with 20 mesh adaptations and the corresponding solutions (density). Left, the initial
solution of the last period at time t = 0.1875 s and right, the final solution of the last period at time tmax = 0.2 s.
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the simulations with classical mesh adaptation. This is emphasized in Fig. 6, where the solution (density) pro-
file is plotted along arbitrary lines.

The impact of the metric intersection in time is shown in Fig. 7 for the initial (left) and the final (right) solu-
tions at time t = 0.1875 and tmax = 0.2 s of the last period, respectively. Notice that all the regions where the
phenomena progress have been uniformly refined to preserve the accuracy of the solution and that the phe-
nomena remain confined in these refined regions, in other words the spatial error has been controlled along
the period. Consequently, with this approach the characteristic time frame of the mesh is automatically set
to the order of the period step: s � Dt.

The results obtained with 10 and 30 adaptations bring us to the same conclusion. As expected, solutions
with less interpolation steps are slightly more accurate since a smaller error due to the projection stage has
been introduced. Nevertheless, a larger mesh size is obtained as the mesh characteristic time frame has been
increased that may impact the overall cpu time. The increase of cpu time for the simulation with 10 adapta-
tions is mainly due to the algorithmic convergence of the solution inside the internal loop. In this case, four
iterations are required to achieve the solution’s algorithmic convergence for 50% of the adaptations.

To conclude with this new approach the space and time error have been controlled whatever the number of
chosen mesh adaptation. Moreover, reducing the number of interpolations (here only 10–30) allowed us to con-
trol the dissipation introduced by the projection stage. In this approach, the time has been implicitly introduced
in the error estimate (by means of metric intersection in time) by controlling the mesh characteristic time frame.

4.2.3. Impact of anisotropic mesh adaptation

In the following, the impact of the anisotropic mesh adaptation is illustrated on the model problem. For
anisotropic simulations, we modify two adaptation parameters, e and c are set to 0.07 and 0.004, respectively,
to have the same complexity like in the isotropic case by utilizing the CFD error estimate provided by Relation
(3). The other parameters remain unchanged.

The three previous transient fixed mesh adaptation simulations and the classical mesh adaptation with 200
adaptations have been carried out in the anisotropic case. The final meshes statistics and the error relative to
the final solutions (density) on X are reported in Table 4. This results led us to the same conclusion for the
transient fixed point mesh adaptation. The errors are almost the same for the L1 norm and lower for the
L2 norm. Compared to the isotropic case, the final adapted meshes size has been reduced by a factor close
to 3, consequently the cpu time has been diminished.

For the classical mesh adaptation scheme, even with 200 adaptations we were not able to follow the phe-
nomenon progression implying a larger error that in the isotropic case. Indeed, the mesh size grows faster in
the anisotropic case thus reducing the mesh characteristic time frame.

To conclude, with the anisotropic unsteady mesh adaptation, we have obtained a solution close to the ref-
erence solution, in the sense given by Relation (19). Notice that for the case with 20 adaptations a reduction of
the mesh size by a factor of 46 and the run time by 17 have been obtained.

Fig. 9 shows the progression of the adapted solution (top) and mesh (bottom) with 20 anisotropic mesh
adaptations based on a transient fixed point. We notice that the physical phenomena intensity has been pre-



Table 4
Statistics of the final anisotropic adapted meshes for the unsteady approach with 10, 20 and 30 adaptations and the errors relative to the
final solutions (density) on X

nadap np ne t cpu k � kL1ðXÞ k � kL2ðXÞ

10 52,435 104,083 26 min 0.0011 0.0063
20 31,419 62,178 18 min 0.0013 0.0057
30 25,343 50,079 18 min 0.0015 0.0063

200 9,159 17,894 13 min 0.0037 0.0097
Href 1,412,782 2,819,770 5 h – –

Fig. 8. The impact of the anisotropy is illustrated on a zoom on the final anisotropic (left) and isotropic (right) adapted meshes with 20
unsteady mesh adaptation.

Fig. 9. The progression of density iso-lines for the adapted solution and the associated adapted mesh at different time 0.1 and 0.2 s, for the
unsteady anisotropic mesh adaptation with 20 adaptations.
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Fig. 10. Final anisotropic adapted meshes and the corresponding solutions (density) at time tmax = 0.2 s for the classical mesh adaptation
with 200 adaptations (top left) and the unsteady approach with 10 (top right), 20 (bottom left) and 30 (bottom right) mesh adaptations.
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served and small details have been captured in the flow as in the isotropic case. Fig. 10 represents the final
anisotropic adapted meshes with the corresponding solutions at time tmax = 0.2 s for all simulations. This fig-
ure points out the control of the mesh characteristic time frame with the new approach, which is of the order
of the period step: s � Dt for each computation. Moreover, we observe that the mesh anisotropy in the
adapted area has been preserved by the metric intersection in time procedure (cf. Fig. 8).

4.3. Conclusion

The transient fixed point mesh adaptation is able to predict the solution progression and to mesh suitably
the regions of evolution by means of an implicit iterative algorithm. As the solution is anticipated for a period
of time [t, t + Dt] and the computation is reiterated, we can think that the efficiency of such approach will be
greatly reduced. Nevertheless, we have demonstrated that this method is really efficient in terms of run time
and complexity (the run time has been reduced by a factor of 9 and 17 for the isotropic and anisotropic cases,
respectively) and also in terms of accuracy as it controls the space and the time error along the computation.
This approach is more expensive than the classical one, but this is mandatory to solve the non-linear mesh
adaptation problem and to obtain very accurate solutions.

Moreover, the scheme accuracy is independent of the chosen period step Dt, i.e., the physical time length
between two adaptations, as the domain is automatically meshed in an optimal manner such that the mesh
characteristic time frame is approximatively equal to the period step Dt.

The efficiency of the method will be emphasized in the next section on Rayleigh–Taylor instabilities simu-
lations and a realistic three-dimensional simulation of a blast in a town.

5. Application to Rayleigh–Taylor instabilities

The instability of an interface separating miscible fluids of different densities subject to gravity is usually
known as a Rayleigh–Taylor instability (RTI) [30]. Here, we consider two inviscid fluids in unstable equilib-
rium in a rectangular cavity of size [0, 0.25] · [0, 1]. The flow is modeled by the Euler equations with gravita-
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tional fields of (0,�1) and (0,0,�1) in two and three dimensions. The upper half of the cavity is filled with a
fluid whose density is two times heavier than that of the fluid filling the lower part (unit density). Both fluids
are submitted to gravity force. The initial pressure corresponds to the hydrostatic equilibrium op

oz ¼ �qg. To
initiate the instability, an initial perturbation of the velocity field is introduced. The light fluid rises into the
heavy one as bubbles and, the heavy fluid falls into the light one as spikes, leaving behind an irregular region
of mixed fluids.

In such simulations, the growth rate of this instability and the rate of mixing between the two fluids is sen-
sitive to the numerical or physical mass diffusion. Therefore, a high resolution of the contact discontinuity is
particularly crucial [31]. Mesh adaptation techniques seem to be appropriate as it is well known that they
reduce the numerical diffusion by utilizing a high spatial resolution (a dense mesh) in the regions where the
instabilities are created, i.e., at the interface between the two fluids.
Fig. 11. 2D RTI development: density iso-values and corresponding meshes at different non-dimensional time t = 0.4, t = 0.9, t = 1.3 and
t = 1.7 (left to right).
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The proposed RTI examples aim at demonstrating that the unsteady mesh adaptation approach is suitable
in dealing with such problem. But the accuracy or the validity of the obtained results, which are highly depen-
dent on the resolution method, is beyond the scope of this paper.

5.1. A two-dimensional example

The solution has been computed at the non-dimensional time tmax = 1.7. The time frame of the simulation
is decomposed into 16 periods, i.e., we have performed 16 mesh adaptations, each involving four internal iter-
Fig. 12. 3D RTI development: density iso-values and cut through the corresponding meshes at different non-dimensional time t = 0.2,
t = 0.8, t = 1.4 and t = 1.8 (left to right).
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ations to solve the transient fixed point problem. The anisotropic metric is defined based on the density vari-
ations in order to accurately capture the contact discontinuity between the two fluids. Inside the internal loop,
nine intermediate solutions are used for the metric intersection in time, the adaptation parameters being:
e ¼ 0:15; c ¼ 0:004; hmin ¼ 3� 10�4; hmax ¼ 0:1 and hgrad ¼ 3;
where e is the prescribed error, hmin and hmax are the minimal and the maximal size allowed, respectively, and
hgrad is the mesh size gradation. This simulation has been performed on a PC workstation, the final anisotropic
adapted mesh contains 240,126 vertices and 479,914 triangles.

With the mesh adaptation procedure, a high spatial resolution is obtained and preserved at the interface
between the two fluids (see Fig. 11). Moreover, the new mesh adaptation algorithm allows automatically
the spatial resolution to be preserved at the interface of the two fluids throughout the progression of the phe-
nomenon in order to accurately resolve contact discontinuities.

In this simulation, it can be observed that anisotropic meshes directly impact the development of the Ray-
leigh–Taylor instabilities. Such meshes preserve the mushroom shape of the Rayleigh–Taylor finger and all the
mixing regions are located behind it. On the other hand, with isotropic meshes these features are more chaotic
and a lot of perturbations appear on the top of the finger. Hence, less instabilities are obtained with aniso-
tropic meshes despite the fact that a higher spatial resolution could be achieved. Moreover, in contrast to
the isotropic meshes, anisotropic meshes tend to preserve the symmetry of the phenomenon even if the mesh
is not symmetric. Such results would lead to assume that isotropic meshes introduce numerical perturbations
which create their own virtual instabilities, a somewhat similar problem to that of the round-off errors that
could introduce their own perturbations.

5.2. A three-dimensional example

The solution has been computed at the non-dimensional time tmax = 1.8. In this case, the time frame of the
simulation is decomposed into nine periods, i.e., we have performed nine mesh adaptations, and at each period
we have done four internal iterations to solve the transient fixed point problem. The isotropic metric field is
defined based on the density variations. Inside the internal loop, nine intermediate solutions are used for the
metric intersection in time and the adaptation parameters have been set to:
e ¼ 0:008; hmin ¼ 3� 10�3; hmax ¼ 0:1 and hgrad ¼ 3:
This three-dimensional simulation has been performed on a PC workstation. The final adapted mesh contains
769,719 vertices and 4,536,589 tetrahedra.
Fig. 13. Geometric surface mesh (left) and initial computational surface mesh (right) of the city plaza.



Fig. 14. Impact of the metric intersection in time in the volume and on the surface. Left, solution at the beginning of the period and, right,
solution at the end of the period. The shocks waves progress only in the uniformly refined regions.

Fig. 15. The progression of the density’s iso-surfaces in the domain at different time 0.027, 0.05, 0.077 and 0.1 s (form left to right and
from top to bottom).
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Similar to the two-dimensional case, a high spatial resolution at the interface between the two fluids is
obtained with the new mesh adaptation procedure (see Fig. 12). The spatial resolution is preserved at the inter-
face of the two fluids all throughout the progression of the phenomenon with only nine mesh adaptations.
Mesh adaptation makes it possible to obtain a sufficient resolution for the development of instabilities in three
dimensions. However, contrary to the previous example, the use of isotropic mesh adaptation has given us a
more chaotic development of the Rayleigh–Taylor instabilities, even if coarser meshes (larger element sizes)
have been used. In Fig. 12, one can see that several instabilities appear on the top of the Rayleigh–Taylor fin-
ger and that the mushroom shape of the phenomena has not been preserved.

6. 3D non-linear waves propagation

In this section, the transient fixed point based mesh adaptation scheme is applied on a realistic three-dimen-
sional case. The problem concerns non-linear waves propagation simulating the development of a blast in a
complex geometry (see Fig. 13). Here, the atmosphere has the same values as in 2D. The initial high density
Fig. 16. Isotropic adapted surface meshes and the corresponding iso-density distributions at different time 0.027, 0.05, 0.077 and 0.1 s.
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region is a hemisphere with a radius of 2.5 m inside which the density, pressure and speed vector are initialized
to q = 1, p = 1 and u = v = w = 0, respectively.

In this example, the objective is to compute the solution at physical time 0.1 s. The simulation is split into
30 periods, i.e., 30 mesh adaptations are performed, corresponding to a period step of Dt = 0.0033 s. In each
main loop iteration, three internal iterations are performed to solve the transient fixed point problem. The iso-
tropic metric is defined based on density variations.

We used five intermediate solutions, including the initial and final one, for the metric intersection in time.
The adaptation parameters are:
Fig. 17
and 0.
e ¼ 0:003; hmin ¼ 0:3 m; hmax ¼ 10 m and hgrad ¼ 3;
where e is the prescribed error threshold, hmin and hmax are the minimal and the maximal element size allowed,
respectively, and hgrad is the mesh size gradation. Notice that in this example a mesh of uniform size
hmin = 0.3 m will contain approximately 1.8 · 107 vertices. An initial coarse mesh with 40,230 vertices has been
. Isotropic adapted volume meshes in a cut plane and the corresponding iso-density distributions at different time 0.027, 0.05, 0.077
1 s.



Table 5
Statistics of the adapted meshes at different iterations

Iteration Physical time Vertices Tetrahedra Triangles

8 0.027 280,525 1,630,619 40,736
15 0.05 603,644 3,541,268 63,526
23 0.077 739,854 4,326,861 78,816
30 0.1 743,735 4,328,741 87,322

Fig. 18. Zoom on the adapted surface mesh pointing out the intersection between the computational metric M and the geometrical metric
G.
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generated (see Fig. 13, right). Fig. 15 shows the shock wave propagation (the density isosurface) in the city
plaza at various physical times. It clearly illustrates the unpredictable behavior of physical phenomena, with
notably a large number of rebounds on the buildings.

Figs. 16 and 17 show the isotropic adapted surface and volume mesh with the corresponding iso-density
distributions at various physical times, respectively. The corresponding meshes sizes are reported in Table
5. In these figures, the mesh density clearly indicates the region where the shock waves progress. Mesh refine-
ment has been prescribed by the metric intersection in time, which allows us to obtain a uniform mesh density
in order to preserve the solution accuracy along the computation.

The metric intersection in time is illustrated in Fig. 14. Notice that the adapted area is ‘‘optimal’’ in the
sense that the mesh characteristic time s is approximately equal to the period step Dt between two adaptations.

Fig. 18 exemplifies the intersection between the computational metric M, which is used to control the solu-
tion error, and the geometrical metric G, which is utilized to control geometric approximation of the domain.
The mesh is clearly refined on curved boundary (e.g. fountain, building) and in the regions where shock waves
progress.

This simulation has been performed on a Macintosh G5 with 2.5 GHz PowerPC processor and 1 Gb of
RAM. At the 23rd adaptation (period) for the last internal loop iteration, the generation of the final surface
mesh (78,816 triangles) and the final volume mesh (739,854 vertices) took 10 and 216 s, respectively. It
required 20 s to compute one metric thus it took 1 min to compute all metrics and the metric intersection
and it required 1 min for the interpolation stage. On the other hand, the number of time steps of the explicit
flow solver is related to the flow characteristics and the mesh size. Consequently, at this iteration the solver has
made 90 time steps with the 4-stage, 3-order SSP Runge–Kutta scheme with a CFL equal to 1.8 to increment
the solution in time by Dt and the cpu time required to compute the Euler solution took approximately 1 h. It
took two and a half days to carry out the whole simulation on a single processor machine.
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7. Conclusion

In this paper, we have identified a class of CFD time-dependent problems for which we have demonstrated
that the classical mesh adaptation algorithm is intrinsically unable to deal with. A new mesh adaptation
method based on a transient fixed point algorithm has been proposed to solve such problems in the case of
global remeshing. This method uses a generalization of the classical mesh adaptation algorithm in order to
predict the evolution of the solution and metric intersection in time procedure to adapt the mesh. With this
method, the time has been implicitly introduced in the error estimate to control the error throughout the sim-
ulation. This new approach preserves the solution accuracy and reduces the number of adaptations to control
the error due to the interpolation stage In other words, it allows us to control the characteristic time frame of
the mesh.

The two-dimensional results on the model problem have confirmed the validity and the efficiency of this
approach with respect to the accuracy of the solution and the reduction of the complexity. It has been success-
fully applied on Rayleigh–Taylor instabilities and in three dimensions on a real simulation on a complex
geometry where the solution is a priori unpredictable. All the numerical results presented have pointed out
the progress in efficiency and in accuracy that have been accomplished since [17] due to the improvement
described in this paper.

Notice that the whole adaptation scheme has been carried out on a workstation in a reasonable amount of
time. The classical bottlenecks of such 3D simulations have been avoided without requiring the use of the par-
allel computing. Parallel computing can of course be used to reduce further the overall cpu time.

All the results obtained so far have emphasized the importance of the interpolation stage for unsteady sim-
ulations. Therefore, the main challenges that we are facing are related to:

� finding interpolation schemes with the same order of accuracy as the flow solver to reduce the error due to
this stage;
� reducing the problem complexity, at the same error level, by using anisotropic mesh adaptation in three

dimensions;
� analyzing the convergence order of the adaptive scheme.

All works are in progress.
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[11] R. Löhner, J. Baum, Adaptive h-refinement on 3D unstructured grids for transient problems, Int. J. Numer. Meth. Fluids 14 (1992)
1407–1419.



F. Alauzet et al. / Journal of Computational Physics 222 (2007) 592–623 623
[12] W. Speares, M. Berzins, A 3D unstructured mesh adaptation algorithm for time-dependent shock-dominated problems, Int. J.
Numer. Meth. Fluids 25 (1997) 81–104.

[13] P. de Sampaio, P. Lyra, K. Morgan, N. Weatherill, Petrov–Galerkin solutions of the incompressible Navier–Stokes equations in
primitive variables with adaptive remeshing, Comput. Methods Appl. Mech. Eng. 106 (1993) 143–178.

[14] J. Wu, J. Zhu, J. Szmelter, O. Zienkiewicz, Error estimation and adaptivity in Navier–Stokes incompressible flows, Comput. Mech. 6
(1990) 259–270.

[15] C. Pain, A. Humpleby, C. de Oliveira, A. Goddard, Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite
element calculations, Comput. Methods Appl. Mech. Eng. 190 (2001) 3771–3796.

[16] J.-F. Remacle, X. Li, M. Shephard, J. Flaherty, Anisotropic adaptive simulation of transient flows using discontinuous Galerkin
methods, Int. J. Numer. Meth. Eng. 62 (2005) 899–923.

[17] F. Alauzet, P.-L. George, B. Mohammadi, P. Frey, H. Borouchaki, Transient fixed point based unstructured mesh adaptation, Int. J.
Numer. Meth. Fluids 43 (6-7) (2003) 729–745.

[18] P. Frey, P.-L. George, Mesh Generation. Application to Finite Elements, Hermès Science, Paris, Oxford, 2000.
[19] C. Debiez, A. Dervieux, Mixed-element-volume MUSCL methods with weak viscosity for steady and unsteady flow calculations,

Comput. Fluids 29 (2000) 89–118.
[20] P. Batten, N. Clarke, C. Lambert, D. Causon, On the choice of wavespeeds for the HLLC riemann solver, SIAM J. Sci. Comput. 18

(6) (1997) 1553–1570.
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